Endothelial arginase II and atherosclerosis

نویسندگان

  • Sungwoo Ryoo
  • Dan E. Berkowitz
  • Hyun Kyo Lim
چکیده

Atherosclerotic vascular disease is the leading cause of morbidity and mortality in developed countries. While it is a complex condition resulting from numerous genetic and environmental factors, it is well recognized that oxidized low-density lipoprotein produces pro-atherogenic effects in endothelial cells (ECs) by inducing the expression of adhesion molecules, stimulating EC apoptosis, inducing superoxide anion formation and impairing protective endothelial nitric oxide (NO) formation. Emerging evidence suggests that the enzyme arginase reciprocally regulates NO synthase and NO production by competing for the common substrate L-arginine. As oxidized LDL (OxLDL) results in arginase activation/upregulation, it appears to be an important contributor to endothelial dysfunction by a mechanism that involves substrate limitation for endothelial NO synthase (eNOS) and NO synthesis. Additionally, arginase enhances production of reactive oxygen species by eNOS. Arginase inhibition in hypercholesterolemic (ApoE(-/-)) mice or arginase II deletion (ArgII(-/-)) mice restores endothelial vasorelaxant function, reduces vascular stiffness and markedly reduces atherosclerotic plaque burden. Furthermore, arginase activation contributes to vascular changes including polyamine-dependent vascular smooth muscle cell proliferation and collagen synthesis. Collectively, arginase may play a key role in the prevention and treatment of atherosclerotic vascular disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial arginase II: a novel target for the treatment of atherosclerosis.

Oxidized low-density lipoproteins increase arginase activity and reciprocally decrease endothelial NO in human aortic endothelial cells. Here, we demonstrate that vascular endothelial arginase activity is increased in atherogenic-prone apolipoprotein E-null (ApoE(-/-)) and wild-type mice fed a high cholesterol diet. In ApoE(-/-) mice, selective arginase II inhibition or deletion of the arginase...

متن کامل

Selective Endothelial Overexpression of Arginase II Induces Endothelial Dysfunction and Hypertension and Enhances Atherosclerosis in Mice

BACKGROUND Cardiovascular disorders associated with endothelial dysfunction, such as atherosclerosis, have decreased nitric oxide (NO) bioavailability. Arginase in the vasculature can compete with eNOS for L-arginine and has been implicated in atherosclerosis. The aim of this study was to evaluate the effect of endothelial-specific elevation of arginase II expression on endothelial function and...

متن کامل

Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling.

Oxidized low-density lipoprotein (OxLDL) impairs NO signaling and endothelial function, and contributes to the pathogenesis of atherosclerosis. Arginase reciprocally regulates NO levels in endothelial cells by competing with NO synthase for the substrate l-arginine. In human aortic endothelial cells, OxLDL stimulation increased arginase enzyme activity in a time- and dose-dependent manner. Argi...

متن کامل

Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction.

BACKGROUND Arginase competes with endothelial nitric oxide synthase (eNOS) for the substrate l-arginine and decreases NO production. This study investigated regulatory mechanisms of arginase activity in endothelial cells and its role in atherosclerosis. METHODS AND RESULTS In human endothelial cells isolated from umbilical veins, thrombin concentration- and time-dependently stimulated arginas...

متن کامل

Arginine and arginase: endothelial NO synthase double crossed?

In a remarkable article published in this issue of Circulation Research, Ryoo et al1 propose endothelial arginase II as a novel target for the treatment of atherosclerosis. Actually, they already had done so 2 years ago, based on work mainly on cultured human aortic endothelial cells,2 which indeed appeared to provide an unexpected way to explain endothelial dysfunction in terms of NO productio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2011